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GENERALIZED TREATMENT OF PLANE ELECTROMAGNETIC WAVES
PASSING THROUGH AN ISOTROPIC INHOMOGENEOUS PLASMA SILAB
AT ARBITRARY ANGLES OF INCIDENCE

By Calvin T. Swift and John S. Evans

SUMMARY

The differential equations describing the passage of plane electromagnetic
waves through a plane-parallel inhomogeneous plasma slab at an arbitrary angle of
incidence are solved by numerical integration between appropriate boundary con-
ditions. The methods used are described and a typical solution is discussed.

INTRODUCTION

Analytical solutions to the wave equation in an inhomogeneous plasma can be
derived for simple electron density distributions (refs. 1, 2, and 3), but such
solutions are often inadequate for application to a given practical problem. One
approach (ref. 4) considers the plasma as a multilayered series of homogeneous
slabs. This technique has been derived for convenient application to waves nor-
mal to the plasma slab; however, extension to include oblique incidence seems
guestionable because derivatives of the plasma properties which generally appear
in the propagation equations for inhomogenecus media do not explicitly appear in
the multilayered-slab approach. The W.K.B. approximation (refs. 5 and 6) gives
good solutions for arbitrary electron density distributions so long as the con-
ditions for its validity are met. These conditions are not met if plasma prop-
erties vary appreciably within a wavelength; and since such plasmas are fre-
quently of interest, another method for obtaining solutions is needed.

The purpose of the work reported herein is to reduce the propagation equa-
tions to a form suitable for numerical integration on an electronic computing
machine. The physical model postulates arbitrarily polarized, plane, monochro-
matic electromagnetic waves impinging at an arbitrary angle of incidence on a
slab of plasma bounded by infinite parallel planes, which separate the plasma
region from vacuum. The plasma properties are assumed to vary only in the direc-
tion of the normal to the planes. In general, discontinuities in the plasma
properties and their first derivatives are permitted only at the boundaries; how-
ever, at normal incidence, the continuity requirement on the first derivative can
be removed.



SYMBOLS

In all derivations mks units are used, but in tables and graphs, linear
dimensions are shown in centimeter units.

=

speed of light, 3 X 108 meters per sec
electric field intensity, volts/meter

z-dependent part of y-component of electric field intensity in plasma,
volts/meter

frequency, sec-1

z-dependent part of y-component of magnetic field intensity in plasma,
ampere-turns/meter

magnetic field intensity, ampere—turns/meter

propagation constant, u/c, meters-l

propagation vector, kxﬁ; + kzﬁ; = kg sin eﬁ; + ko cos eﬁ;, meters=t
arbitrary constants determined by solution of wave equation, volts/meter

number of electrons per cubic meter

index of refraction, \’éi
0

voltage reflection coefficients of perpendicular and parallel components
of wave, respectively

b = — -
position vector, xuy + yuy + zuy, meters

voltage transmission coefficients of perpendicular and parallel compo-
nents of wave, respectively

unit vector in x-direction
unit vector in y-direction

unit vector in z-direction




N b 1
' a)/wp w\2 , [v)\2
&) @
X,¥,2 Cartesian coordinates
X x-dependent part of solution of wave equation
Z z-dependent part of solution of wave equation
Zo thickness of plasma slab, meters
Z1 ramp depth for trapezoidal electron density, meters
V4 amplitude factor defined by equation (110), radians
Op pPhase angle of reflected wave, radians
By, phase angle of transmitted wave, radians
€ permittivity, farads/meter
€ permittivity of free space, 8.85hk x 10-12 farads/meter
e angle of incidence, deg
8¢ angle of transmission, deg
A wavelength, meters
. Ho permeability of free space = U x 10-T henry/meter
1% mean collision frequency of electrons with neutral particles,

> collisions per second

13 phase difference between parallel and perpendicular components of
incident wave, which accounts for elliptical polarization, radians

¢ angle between incident electric vector and y-axis, deg



¥ phase factor defined by equation (111), radians

w frequency of propagating wave (radians per second)

wp plasma frequency (radians per second), 2n X 8.97 X Vﬁ;

il magnitude of a complex number

! differentiation with respect to =z

Subscripts:

E components of X and Z which are solutions to the electric field
intensity

fs wave in free space (includes incident and reflected components)

H components of X and Z which are solutions to the magnetic field
intensity

i incident wave

P wave transmitted into plasma

T reflected wave

t wave which has transmitted through plasma slab

X x-component of wave

y y-component of wave

z z-component of wave

7fs tangential component of wave in free space (including incident and
reflected waves)

TP tangential component of wave which is transmitted into plasma

0 amplitude of wave or free-space parameter, as appropriate

00 amplitude of arbitrarily oriented incident wave

1 component of the wave which is perpendicular to plane of incidence

2 component of the wave which is parallel to plane of incidence

Note that the subscripts are used in combination. For instance, Eppy 1is

the amplitude of the y-component of the reflected electric vector.
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THEORY

Electromagnetic Waves in an Inhomogeneous Plasma

- -
The wave equations for E and H in inhomogeneous media are (refs. 1 and 7):

n2

v2E+ kozngf}) = -V})(_) . @E) (1)

2.2 - -
VeE + ky2nH = _V_1'12_x (v><11) (2)
n

where the index of refraction n is a function of position.

Let an electromagnetic wave be incident upon an inhomogeneous plasma slab
as shown in figure 1. The plane of incidence of the wave is defined as the plane
. . - -
which contains Uz and Xgp. The
electric vectorﬂ}s, by definition,
orthogonal to kpy; however, there is Erz A

no imposed restriction on the orienta-

tion of i? with respect to the plane

of incidence. Although a ray path is

shown in the diagram for visual pur-

poses, the method presented does not -®
depend upon explicit knowledge of the
ray path., It is of interest to note
(see appendix) that the angle of the
emerging ray is identical to that of
the incident wave, even for the inho- Eiyal--
mogeneous case discussed in this anal-
ysis. If the variation of the index
of refraction is restricted to cne Figure l.- Geometry of plane-wave inter-

dimension so that action with an inhomogeneous plasma slab.
Ne = Ne(z); v = v(z).

4 -
Ej1=Ejy=£0p Cos ¢ *o

n = n(z) (3)

and if the wave in free space is independent of Yy, then the solutions to equa-
tions (1) and (2) are independent of y. (See appendix.) If the condition pos-
tulated by equation (3) is used and all derivatives with respect to y are
ignored, equations (1) and (2) become

o d g 2 2
O L O, 1 Pn2(2)E - - 2|, 2 (2|7 3|y am(z)p ()
" ¥° oz oz



2 2 2 3 2 3
a_g + 5_12{. + k2n2(z)H = 21 on°(2) (B AT 21 on (z) OBy 2, (5)
x> oz n2(z) dz \%z 22(z) oz o2

-
Solutions to equation (4) for arbitrary orientation of E can be obtained
by solving three differential equations in which Eyx, Ey, and E; are dependent

variables. The solutions of equaticn (5) can be found from the solutions of
equation (4) by means of Maxwell's equations. However, Stratton (ref. 8, p. 492)
has shown that the wave in the plasma can be uniquely defined by two rather than
three differential equations in which the dependent variables are E; = Ey and

Eo = que + EZ2 and, since Ep 1s related to Hy through Maxwell's equations,

the two differential equations for which sclutions are required are:

For the El case:

2 2
) )
?W~{?+%%aw%=o (6)
ox oz
For the Eo case:
2 2
Ty Wy 2oy, o L n(z) Oy (7)
x  af n?(z) 92

If a product solution to equations (6) and (7) is assumed, it follows that

By(x,z) = Zg(z)Xg(x) (8)

and

Zy( 2 )X (x) (9)

Hy(X;Z)

The substitution of equations (8) and (9) into equations (6) and (7) results in
a solution for Xy and Xg. ©Solving for the X's yields for Ey and Hy

Fy(z)etikxx (10)

Ey(XJZ)

Gy(z)eiikxx (11)

1]

Hy(x,2)

RESETTu T D L L

e,
SEe o



But from the arguments of the appendix and from figure 1, ky = ko sin 6. If
the condition is made that the wave propagates in the positive x-direction, the
negative sign on the exponent can be dropped. The positive sign on kygx implies

also a time factor of e~1®', Equations (10) and (11) now become

It

Fy(z)eikOXSine (12)

Ey(X:Z)

ikoxsine

Hy(X;Z) Gy(z)e (13)

Substitution of equations (12) and (13) into equations (6) and (7) further
reduces the wave equations to

szy(z) .

> ko2 [n2(z) - sin2e|Fy(z) = 0 (1k4)

dz

a°Gy(z) j dn2(z) dGy(z) N

dZE nE(z)dz dz

k02[n2(z) - sin®8]Gy(z) = 0 (15)

The solution to the wave equation in free space is obtained by setting

n® = 1 and the right-hand side of equations (1) and (2) equal to zero. If the
propagation vector kyp 1lies in the xz-plane, then the incident waves will be of

the form

. -
- i ‘T
Ejy = Eyoy© €01
(16)
'E% Py
ikpg *
Hiy = Higye ™F
From inspection of figure 1, it can readily be determined that
- - . - - - — -
kg = r = ko(s1n Buy + cos euz> . (xu,X + yuy + zuz)
= kox sin 8 + kgz cos @ (17)



Likewise, the reflected waves have the form

-_) —>
Ery = ErOyelkor.r
(18)
1KgpeT
Hry = Hroye kor
with
- -
kor * T = kgx sin 6 - kpz cos 6 (19)

and the transmitted waves will be

.—> g
Epy = Etoyelkot'r
(20)
- -
_ ikot-r
Hyy = Hyoy®
with
- —
Kyt + r = kox sin 6 + kpz cos © (21)
Boundary Conditions and Reduction of Wave Equations
to Computational Form
Case 1: E perpendicular to the plane of incidence.- When E 1is perpendic-
ular to the plane of incidence, the boundary conditions at the surfaces =z = 0
and z = zy require that the tangential components of and be continuous

across each surface. At the boundary z = O,

ETfS = ETP (22)
Hrfs = Hrp (23)
Equation (22) requires that




=

R et

or
Bioy + Eroy = Fy(0) (25)
Now, since
- - -
H= -1 VxE (26)
iapg
equation (23) becomes
—) 4 . ry
uy<gz' By + Ery) = dye 0% 0my " (0) (27)
or
iky cos 6(Eioy - Eroy> = Fy'(o) (28)

Similarly, the boundary condlitions at 2z = zy lead to the equations

ikpzpcose

Fy(z0) = Etoye (29)

and

Fy'(zo) = iky cos eEtOyelkOZOcose (30)

Thus, the problem is reduced to solving the differential equation (14):

2
d_F.yé_Z) + k02E12(z) - sinee:le(z) =0
dz

subject to the four boundary conditions (egqs. (25), (28), (29), and (30)). The
wave equation and the boundary conditions are composed of complex quantities. It
is therefore necessary to separate real and imaginary parts prior to machine pro-
graming. If the boundary conditions are divided by EiOy and if the following

definitions are expressed:

Eroy _
EiOy

|R1|eiarl (31)



EtO id
J 101

= |T]e 32
By | ll ( )

then the boundary conditions (egs. (25), (28), (29), and (30)) reduce to

iy _ Iy(0) (33)

) F,'(0)
iky cos (1 - lRl|e16T%> =L (3k)
EiOy
Fyv(z i{kpzpcos0+dt1
Eiogy
Fol(z :
Yy (20) - ik, cos elTllel(kaocose+6tl) (36)
Eioy
If the boundary conditicons are divided by
lTllei(kozocosG+8tl)
and if further notations are introduced, such that
—i(kozocose+6tl)
e
I; = (37)
|74 |
and
—_ IRll —i(kozocose+8tl)
Ry = e (38)

|71 |

10




TR

tion of the equations is complete.

a2(r + is)

the boundary conditions (egs. (33) to (36)) now become

Fy(z0)I1 _
EiOy

Fy'(z0)I1

=1 cos 0
- kg

iOy

gZSEAEE = r(z) + is(z)
Eioy
n2(z) = v(z) + iW(z)
v*(z) = v(z) - sin®g

the differential equation (14) becomes

+ k2(VF + dW)(r + is) = 0
dz2

Equation (46) can be separated into real and imaginary parts, and they must
independently vanish; therefore,

(39)

(40)

(41)

(42)

If the differential equation (14) is multiplied by Il/EiOy: the normaliza-

If the following definitions are expressed:

(43)

(4h)

(45)

(h6)

11



2

2T 4 x2(V¥r - Ws) = 0

d22

) (47)

2

d

Z2 + kB(Wr + V¥s) = 0

daz® J
Also, n2(z) is interpreted as the square of the complex index of refraction
with

_v/% 1
w/uyp @ 2 s 2
&) &)
From the definition (43), the boundary conditioms at zy (egs. (41)
and (42)) become

r(zp) =1
(48)
s(zg) = O
r'(zo) =0
(49)
s'(zg) = ko cos ©
The parameters T and R can be solved from the boundary conditions at z =
1 1
I; + ﬁlelSTl = r(0) + is(0) (50)
. —_— i6rl ' . 1
iky cos 0(I; - Rie = r*(0) + is'(0) (51)

12




i

The solutions to these quantities are:

t 1
1 = Llr(o) + 29 | 4 Lylsqoy - EHO)
2 ko cos © 2 ko cos 6
_ 1 ;
= E(Al + iBy) (52)
and
B = {Lle(oy - 20 b 1iig0) + 2O (i
2 ky cos 6 2 ky cos 8
Sr1

(53)

1 : -1
E(Cl + 1Dl)e

The values 1(0), r'(0), s(0), and s'(0) are found from the solution of
the wave equation (47).

From equation (37), the magnitude of I is

m === (54)

Therefore,

2

a2 2
A© + By

And from equation (38), the magnitude of ﬁi is

[T1] = (55)

: R | - 1Rl
Ex o (56)

13



Therefore, the reflection coefficient is

(57)

—_
The quantity ©&,7 1is the phase of the reflected E vector and 8&y7 1is the

-
phase of the transmitted E vector. The phase factors are computed by first
making equation (53) equal to the definition of equation (38). Thus,

5 Ry -i{kpzpcose+d4] '
i<C]_ + iDl)e idr1 _ ' , e ( > (58)
2 | T1 ]
But, from equation (56)
[ Ry 2 >
= 1 2 2
IR:LI:_:E\]C]_ + D1
| T1 |
Therefore,
Cp + 1Dy -1 7 COS0+B1 7 -0
e (k020 +1-0r1) (59)
012 -+ D12
and
D
tan(kozo cos B + By - 6r1) = - Ei (60)
1
or
D
kpzg cos 6 + B - Op1 = arc tan<— E—i—) (61)
Similarly, if (52) and (37) are equated,
—i(kozgcose+6tl>
1 . e
I; = —(A + iB ) - 62
1=34M 1 = (62)

14

-
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But, from equations (54) and (55)

__..l =|Il|=LVA12+B]_2
| Ty | 2
Therefore,
A, + iB -i{ kpzpcosH+d
1 1 .. (k020 +1) (63)
\lAlE + B]_'2
and
B
kgzg cos 8 + By3 = arc tan|- K%) (64)
1

Equations (61) and (64) are equations with which to solve for the two unknowns
831 and ©8t1. The solutions for the phase factors are:

By

841 = arc tan<— Ki—> - kgzg cos 6 (65)
B; Dy

8r1 = arc tan|- — | - arc tan|- — (66)
Ay C1

Case 2: E parallel to the plane of incidence.- As in case 1, the boundary

conditions at the surfaEFs z =_p and 2z = zg require continuity of the tan-
gential components of E and H.

At 2z = 0, equation (23) establishes the requirement that

Wy X <Hioyﬁ’y + Hroyﬁ’y> = U, x Gy(0)dy (67)
or
Higy + Hpoy = Gy(0) (67a)

15



And, since

- - -
E=--+ VxH (68)
iwe
equation (22) requires that
2 o - o Uz X €?X Gy(Ofg i ing
o % |- 'J. VxH - 1 PxE) -2 X Y lkoxsin (69)
iweg iweg iwe(0)

or

ikp cos e(nioy - Hroy> Gy ' (0) (69a)

1
n2(0)
Similarly, the boundary conditions at 2z = zp require that

ikozocose

Gy(Zo) = Hyoye (70)

and
. iknzncos6
Gy'(zo) = n2(zo)1k0 cos BHypye koZo (71)

As in case 1, the problem is reduced to solving equation (15):

y(z) 1 an?(2) day(z)

dz? 2(z) dz Frm ko2 [n2(z) - singé]Gy(Z) -0
VA n z

subject to the boundary conditions (67a), (69a), (70), and (71). If the boundary
conditions are normalized as in case 1, they reduce to

Io + Fée15r2 = 91&91 I» = t(0) + iu(0) (72)
HiOy
ikon2(0)cos e(ig - ﬁéei5r?> = Ez;ﬁgl I = t'(0) + iu'(0) (73)
Hioy

16 .
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where

Gy’ (Z0)
Hioy

(%) 1, - t(20) + tu(z0) = 1
Hioy

Iz

Ro

n2(0)

n2(

In

t'(zo) + iu'(zo)
ikong(zo)cos 5]

ikoV(zp)cos 8 - koW(zp)cos 6

Il

v(0) + iw(0)

Zo) V(Zo) + iW(Zo)
HrOy

id
= [Rp|et®r2
Hioy |Re |

O |y fete2
HiOy

e—i(kozocose+8tg)

| T2 |

R -i o)
[Ro| . 1(kgzocos8+3t2)
[T2 |

|Io] = 2
[T2|

_ R
]
| T2 |

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

17



Gy(z)

Is = t(z iu(z 84
Hioy 2 (z) + iu(z) (8k)

If the differential equation (15) is multiplied by IE/HiOy , the following equa-

tion results:

_E(Z) + 1u( ):l [V( ) - iw(z ):l [dv(z) dt(z) _ daw(z) du(z)] + 1 aw( (z)
v2(z) + WA(z)] az

dV( ) du(z)]} + Ky {Er*(z)t (z) - W(z)u(z) ] + 1EN'( Yt(z) + V¥(z)u(z) :I}
(85)

As before, the real and imaginary parts must independently vanish, whereby two
similtaneous differential equations result:

Pe(z) w(z) at(z)

[V( z) dt( ) dW(z) du(z )] [
dz° [2( )+w2 Z)] E, )+w2(z)] dz

) dg‘Z’] . kOeE,*(Z)t(Z) i w<z)u(zﬂ “o (862)
2u(z) ___ V(z) Em( z) at(z) , av(z) au(z>] W(z) [Mz) at(z)
az” [2(2) + w2(z)] oo [2(.2) + Wg(z)J "o

i} __dgiz) _(_dgzz)] + ko?EI(z)t(z) + V*(z)u(z)] =0 (86b)

By separating real and imaginary parts in equations (74) and (75) the
boundary conditions for t and u at zp are:

18




B

t(ZO) =1
(87)
u(zg) = O
t'(zo) = -koW(zp)cos 6
(88)
u'(zo) = kgV(zp)cos 6
The boundary conditions, and the solutions of u and t at 2z = 0,
determine the reflection and transmission terms.
From equations (72) and (73)
_ 1 -W(0)t'(0) + v(0)u'(0)
I, = > t(0) + [2 2
kg cos 8[W=(0) +V (o)]
+ 1 Ja(o) + V(DET(0) - W(O)u'(0)
ko cos G[WE(O) + V2(Oﬂ
= %(Ag + iBg) (89)
and
Roel®r2 _ L [e(0y + w(0)t'(0) - v(0)u'(0)
2 kg cos e[we(o) + V2(O)]
+ 1fu(o) + v(0)t' (o) + W(o)u'(0)
ko cos 6 W2(O) + V2(O:|
- 32+ i02) (90)

19



The transmission and reflection coefficients are:

|Tp| = —L— = (91)
2] a2 + 5
= 2 2

|72 - 5] e 2 (92)
|I2‘ A22 + ng

Equations (89) and (90) (with definitions (80) and (81)) are equivalent in form
to the corresponding equations for E perpendicular to the plane of incidence;
therefore, the phase terms of the parallel component will be

Byp = arc tan(i E@) - kyzg cos 6 (93)
Ap
drp = arc ta (: §2> - arc tan(b §g> (9k)
2 2

Arbitrary Orientation of Electric Vector With Respect to
the Plane of Incidence

If the electric vector is oriented at an arbitrary angle with respect to the
plane of incidence, it may be resolved into vector components parallel to and
perpendicular to the plane of incidence. The purpose of this section is to see
how the components recombine after the wave interacts with the plasma.

Case 1l: Transmission coefficient for E at arbitrary orientation to plane
of incidence.- From figure 1, let @ be the angle between the electric vector
and the y-axis. If the amplitude of the electric vector is Egyg, then

EiOy = Egp cos ¢
Ejox = -Foo sin @ cos 6 (95)
Eigz = Boo sin § sin @

20
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and since (eq. 26)

—-> 1 - -
H = - V X E
iayp

1 /aEix _ BEi%>e-i(koxsine+kozcos6)

Hs =
10y icmo\ oz ox
/e
0
= =\ |—<F sin (96)
s 00 ¢
the transmitted waves are:
i{ kgxsin®+knzcose+dy ]
Ety = | T1|Ego cos fe ( )
= Etl (97)
€ . i\ kpxsinb+kpyzcose+d
\/ o
But
2 2
Egp = \/Etx + Egy (99)

where Egy and E,; can be determined from the relationship (eq. (68))

—> 1 = —
E = - V X H
i(.l)eo
Performing this operation yields
- i xsin6+kpzcosB+5
Efp = (-cos 6ux + sin eﬁ;>|T2|EOO sin ge (ko 50 tg) (100)
and, from equation (99)
. il kpxsin®+kpzcoss+dyo
Etp = [ To|Boo sin fge (ko %o )
_ HO
= ~Hyy\ [== (101)

0

21



The transmitted electric vector is the vector sum of its components, or

’ 2 2
Ey = \[Et)~ + Eg2 (102)

Substituting equation (97) and equation (101) into equation (102) and dividing

by Epp &ives ]
1/2 ..
E . . N .
Eg— = <?120052¢e216tl + T2251n2¢6218t2> el(kOX51n9+kOZC°SG) j
0

1i/2
2i(8gno-0 . .
{%12COSE¢ + T2251n2¢e 1( t2 tl{] el(kox51ne+kozcose+5tl)
(103)

Let

1/2
2i -
‘é12c032¢ + T2281n2¢e (Btg StliJ

1/2
- {[lecos% + 128102 cos 2(8yp - atl)] + i[I‘gesinng sin 2(8yp - Stl)]}
= eV (104)
and define
Az = Tl2cosz¢ + T22sin2¢ cos 2<8t2 - 5tl> (105)
B3 = ngsin2¢ sin 2<5t2 - 8tl> (106)
Then
Az + iBz = 72e21¢ (107) ¥
Az = y2cos 2y (108) '
By = 72sin 2y (109)

22



Az + Bz = v (110)
1 B3
¥ = = arc tan{-—= (111)
2 A5
Therefore,
i koxsine+kozcose+6 +J:arctan 92
- 1/k 175 Az
i;;.= (A32 + B52> e (112)
00
1/h
E
|T| = i <A52 + 332> (113)
Eoo

It may be noted, in general, that a polarization shift is implied by
equation (112).

Case 2: Reflection coefficient for E at arbitrary orientation to plane
of incidence.- As in case 1 (egs. (95) and (96))

EiOy = Epp cos ¢

€0
H: = -\ — E sin
10y \/Ho 00 g

But from equations (18), (19), (31), (78), (95), and (96), the reflected com-
ponents are:

i(koxsine—kozcose+8r1)

Ery = |Ry|Eoo cos Pe (11k)
€ i{ koxsind-kyzcoso+dro
Hry = '\,£|R2|Eoo sin fe ( ) (115)

From the relationship (eq. (68)),
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equation (115) determines the parallel component of the electric vector. When
equation (68) is used,

i(koxsine—kozcose+6 2)
- r
Epp = (cos Ouy + sin eﬁ;>|R2|Eoo sin ge (116)

and

5 5 i(koxsine—kozcose+6r2>
Epp = \/Erx + Epy~ = |Ro|Egg sin de (117)

Combining equations (114) and (117), with the definition

[ 2 2
Ep =\[Epp + Epp (118)

and dividing by Eyy yields the reflected component

1/2
E 218 21 1\ kpxsin@-kpzcosh
Ez— <R1200s2¢e Tl Ro“sin“ge r2> e <ko 0 )
00

1l

1/2

2i<5r2“6rl> i( xsing-knzcoso+d >
R12c0s2¢ + R22sin2¢e e 0 ko rl

(119)

The form of equation (119) is similar to that of equation (103). Therefore,

B
1/4 i[%oxsine—kozcose+6rrk%arctan(xéﬂ

E

S <A42 + Bf) e (120)

Eoo

5 5 1/h
IR} = | — =<A + B ) (121)
Foo L i
where

A} = RpPcos®f + RoPsin2g cos 2<$rg - 8r1> (122)
By = Rp®sin?f sin 2<5r2 - 6r1> (123)
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Arbitrary Polarization of Incident Wave
The electric vector of an elliptically polarized wave can be resolved into

two orthogonal linearly polarized components. Suppose the incident wave of fig-
ure 1 is elliptically polarized so that

where ¢ 1is the phase difference between the perpendicular and parallel compo-

nents. If EiOy is replaced by Eioyelg, the definitions of the reflection and

transmission coefficients are altered so that equations (31) and (32) become:

- i(8r1+g>
207 _ | Ry |e (124)
Ejoy
Eto 1({8t71+E
S0y _ g, 1ot (Beate) (125)
i0y
The boundary conditions (33) to (36) are also modified so that they become:
— i Fv (O .
1, + Fpeitrt - (0 i (126)
Eioy
1
— 18 F 0 .
iky cos 9<Il - Rpe rl) _Fy 0 Tie™ 1t (127)
EiOy
Fy(2z .
Fy(%0) Ie"t€ =1 (128)
EiOy
Fy'(z :
_Z—L—Ql Ile'lg = iky cos 8 (129)
EiOy
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However, the additional factor & can be absorbed by redefining r and s

(eq. (43))

Fy(z)
EiOy

r(z) + is(z) = T,e"16 (130)

If the wave equation is multiplied by EIl e'ig, then the differential equa-
iOy

tions which involve r(z), s(z), and the boundary conditions remain unaltered.
Thus, the appropriate parameters for an elliptically polarized wave are obtained
by adding the phase factor ¢ +to the solutions for &p; and &t].

RESULTS

Test Cases for Machine Program

The numerical integration of the propagation equations was performed on an
IBM 7090 electronic data processing system by the Runge-Kutta method with an
accuracy of 10-T per integration.

As a first check of the computer program, analytical and machine calcula-
tions were compared for the homogeneous collision-free plasma (v/a? = O). The

value of £ = 2 (hence an index of refraction of 1/1.5) was chosen because
“® |5
Rossi (ref. 9, pp. 137 and 377) has computed convenient parameters for n = 1/1.5,

which aided hand calculations. The plasma slab was arbitrarily chosen to be
6 free-space wavelengths deep. Figure 2 shows that the agreement was good.

Machine computations were also carried out for cases with collisions in order
to observe the behavior of the transmission coefficient when losses are introduced.
The results of these calculations are in figure 2. For the lossy plasmas, hand-
calculated transmission coefficients at 6 = 0 (normal incidence) were in excel-
lent agreement with the machine results. The interference effects, which appear
so strongly for v/wp = 0 are caused by multiple internal reflections. As the

plasma losses become more predominant the waves which undergo multiple reflections
are damped out, as figure 2 shows. Figure 2 also shows that the calculated trans-
mission coefficient drops sharply as 6 exceeds the critical angle, which is
defined as the angle of incidence for which the refraction angle is 90°. For
angles of incidence greater than the critical angle (6 =~ 42°) the transmitted
wave 1s exponentially damped (ref. 8, p. 498).

Figure % is a plot of phase difference between the reflected y-components of
- -
E and H as a function of the angle of incidence. DNote that figure 3 represents
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O Hand computed points

4 B
25 = exo

(.“‘_)2 =5/9

w

wup =107 _
. - |
IR ——
1 \

050 40 30 20 10 0 10 20 30 40 50
8, deg 8, deg

Transmission coefficient

Figure 2.- Transmission coefficients for a homogeneous plasma slab.

the phase difference between El(zEy> and Eg(i %Q-Hyeif> provided 180° is

0
added to every point on the ordinate. An interesting feature of this plot is the
abrupt change in phase difference at 6 = 340, which is the Brewster, or polar-
izing, angle for this medium (ref. 8, p. 497).

Table I lists all of the computed results obtained for the homogeneous plasma

with &

_ 3.
N E

Plots of reflection and transmission coefficients at normal incidence for
a plasma slab with constant collision frequency and a trapezoidal electron density
distribution like that shown in figure U4 were given in reference 2. A comparison
of the machine-computed coefficients with those of reference 2 is shown in fig-
ure 5 as a function of the trapezoid base width. The agreement is excellent,
but the comparison is unfortunately limited to normal incidence.
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TABLE I.- COMPUTER RESULTS FOR THE HOMOGENEOUS PLASMA SIAB

6, Ty o Ry Rp Sr1s Sr2» B¢1s Btz 5r2 - Br1s | Bt2 - Bt1s
deg radians I radians | radians | radians radians radians
a) For X =0; zq = 6 =18 em; & =2
( ) p r “0 7\0 s @p Vg

0 1.0000 | =m=me- o | ------ 1.558 | —emee-- R = B e e e
13.415 .909k | 0.9356 L4160 | 0.3531 -.0119 | -3.154 -38.253 | -38.254 -3.1k42 -0.0003
18.823 | 1.000 1.0000 .0059 .0039 1.558 L, 700 -32.554 | -32.554 3.142 .0008
22.867 8735 .9621 .4868 L2729 -.0119 3.128 -33.177 | -33.179 3.140 -.0012
26.161 | 1.0000 | 1.0000 .0087 .0032 1.554 -1.585 -33.854 | -33.852 -3.139 .0021
28.954 8216 .9867 .5700 .1628 -.0140 | -3.158 =34 .572 | -34.575 -3, 144 -.0028
31.359 .9999 | 1.0000 .01k5 .0017 1.547 L.694 -29.074 | -29.069 3.147 -.00k9
33 449 LThTL .9999 L6647 .0106 -.0160 3.120 -29.900 | -29.906 3.136 -.005%
35.261 .9998 | 1.0000 .0216 .0018 1.5k1 1.550 -30.813 | -30.80k .0090 .0090
36.834 .6L22 .9803 .T665 L1975 -.0188 -.0287 | -31.763 | -31.773 -.0099 -.0099
38.170 .9991 .9999 L0433 .0105 1.518 1.538 -26.550 | -26.529 .0207 .0207
39.287 . 5005 .8851 .8658 .65k -.0153 -.0270 | -27.623 | -27.635 -.0117 -.0117
40.203 L9943 .9993 .1068 .0381 1.453 1.509 -28.911 | -28.855 .0556 L0556
40.905 .3187 .6L8T .gk79 L7610 -.0185 -.0376 | -30.082 } -30.101 -.0191 -.0191
41, kot .9277 .9858 L3733 L1677 1.179 1.381 -25.526 | -25.324 .2022 L2022
41.713 L0974 2173 L9952 L9761 -.0225 -.0503 | -26.59k | -26.621 -.0277 -.0277

b) For L = 10-2; z5 = 6 =18cm;£=—3—

( ) ‘Dp s 20 )‘O % \5
0 0.7773 | -===-- 0.0019 | --=--- 0.0728 | —ecen “BTLTLL | mmmmee | e | e
13.415 .8106 | 0.8315 L3737 | 0.3163 -.0203 | -3.162 -38.250 | -38.251 -3.141 -0.0010
18.823 .8624 .8690 .0586 .0390 .0529 3.198 -32.552 | -32.552 3.145 .0003
22.867 . 7683 .8367 L4326 .2398 -.0207 3.124 -33.173 | -33.177 3.1k -.0033
26.161 .8354 .8523 .0815 .0306 .0500 | -3.080 -33.850 | -33.850 -3.130 .0007
28.954 L7112 .8335 .5005 .1396 -.0229 | -3.151 -34.566 | -34.573 -3.128 -.0068
31.359 L7952 .8283 L1179 L01h47 .0k95 3.2h0 -29.068 | -29.067 3.191 L0014
33,449 L6340 L8117 L5761 .0101 -.0251 3.592 -29.891 | -29.903 3.617 -.0117
35.261 .7316 L7902 777 L0161 L0301 -.0522 | -30.801 | -30.800 -.082k4 L0011
36.834 .5308 1527 L6561 L1571 -.0282 -.0918 | -31.747 | -31.766 -.0636 -.0188
38.170 .6240 721k .2823 .0790 L0136 -.0200 | -26.518 | -26.519 -.0337 -.0005
39.287 .3968 L6277 L7338 .3528 -.0272 -.0805 | -27.586 | -27.612 -.0533 -.0256
Lo .203 4371 5779 477 .2196 -.0229 -.060Lk | -28.796 | -28.809 -.0375 -.0128
4o . 905 .2287 Jho1t .Boke L5571 -.0358 -.0985 | -29.966 | -30.006 -.0627 -.0399
41407 L1679 .2823 .T469 .5307 -.0891 -.183%6 | -31.143 | -31.215 -.0945 -.0727
41.713 .0682 .1305 .8704 L7323 -.0898 -.2093 | -25.628 | -25.726 -.1195 -.0983

c) For X =10-1; zq = 60y = 18 cm;£=l

( ) @p » 40 )\O wp ﬁ
0 0.091k | —mmeem 0.0326 | —=mmm- -0.1332 | ———m—— -37.589 | —mmmeem | mmmmeem e
13.415 .2758 | 0.2800 .2332 | 0.1957 -.0982 | -3.231 -38.118 | -38.122 -3.132 ~0.0041
18.823 .2526 .2596 .2205 .1508 -.1393 | -3.258 -38.683 | -38.692 -3.118 -.0088
22.867 2243 .2357 .2708 .1k66 -.1107 3.076 -33%.005 | -33.020 3.187 -.0145
26.161 .1986 .2116 .2706 .1086 ~.1479 3.078 -33.650 | -33.672 3.226 -.021k4
28.954 .1693 .1855 .3182 L0874 -.1287 | -3.107 -34.339 | -34,369 -2.978 -.029%
31.359 L1420 .1586 .3330 .0521 -.1617 | -2.937 -35.068 | -35.108 -2.775 -.0k01
33,449 L1135 .1310 L3784 .0288 -. 1546 4,160 -29.557 | -29.609 4,315 -.0517
35.261 .0875 .1036 .4088 .ok82 -.1845 | -1.008 -30.359 | -30.428 -.8236 -.0686
36.834 L0630 07Tk L45h2 L0964 -.193%0 -.7193 | -31.190 | -31.278 -.5263 -.0872
38.170 L0426 L0540 .hot2 .1526 -.2232 -.6653 | -32.013 | -32.127 - bhoo -.1133
39.287 .0266 L0350 .5430 .21hkg -.2Lok 5.615 -26.512 | -26.655 5.865 -.1430
4o.203 .0157 .0212 .5880 .2793 -.2850 -.7094k | -27.202 | -27.381 - by -.179%
40.905 .0092 .0128 L6261 L3370 -.3212 -.T643 | -27.733 | -27.949 - 431 -.2162
41,407 .0059 .0082 L6548 .3823 -.3533 -.8176 | -28.090 | -28.338 -.h6h3 -.2482
k1.713 .0043 .0061 L6724 L4108 -.3756 -.8557 | -28.289 | -28.559 -.4801 -.2701
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Figure 3.- Phase difference of reflected ficients as a function of trapezoid base
components (Ey and Hy) for the homoge- width (from ref. 2). f = 109 cps;
neous plasma slab. zg = 6)y; v = 8.241 x 108 sec-1;
(ap/w)e = 5/9. Ne(z1) = 9.5273 x 109 em=3; zy = 0.25N;.

Practical Application

The plasma surrounding a reentering body provides an interesting application
of the program. The dimensions of many shock layers of current interest are com-
parable to or smaller than telemetry wavelengths; hence, a W.K.B. solution of the

wave equation is not valid.

Typical distributions (ref. 10) of electron demsity and collision frequency

are given in figure 6 along a line perpendicular to the body. The Ne
which continually increases from the shock to the body corresponds to a

curve
com-

pletely inviscid shock layer. The Ne curve which has a maximum between the
shock and the body is a flow profile which includes a viscous boundary layer.
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The y = 0 plane defines the H-plane (El) and the x = 0 plane corresponds to
the E-plane (E2) of a slot antenna whose major dimension is along the x-axis.

The plane-wave transmission coefficients are plotted in figures 7 and 8 for
the two flow-field approximations. The shapif of the two curves are similar.

The transmitted perpendicular component of E 1s maximum at normal incidence
and transmission gradually decreases with increasing%?ngle of incidence. On the
other hand, the transmitted parallel components of E gradually increase with
increasing angle of incidence. At near grazing incidence the parallel transmis-
sion coefficient drops rapidly to zero. It must be emphasized that figures 7
and 8 are the result of calculations based on an idealized plasma model; that is,
transmission and reflection coefficients have been calculated for plane mono-
chromatic waves incident at various angles on a plane parallel plasma slab in
which the plasma properties vary only in the direction normal to the bounding
planes. In lieu of a better method, these calculated transmission coefficients
can be applied to the free-space radiation pattern of an antenna. Whether the
resultant radiation pattern is a good approximation of the actual pattern depends

on many factors. Consequently, some caution should be exercised in using this
approach.

The computed results for several angles of incidence for the typical plasma
layers with and without a boundary layer are given in table ITI.

8,deg 8,deg

50 40 30 20 10 O IO 20 30 40 50 40, 30 20 10 O 10 20 30 40
60
50
70 60
80 \\\",/ / &
%
//' \ 80
o (T e Y
INSEN
Figure 8.- Transmission coefficients in
Figure T7.- Transmission coefficients in decibels as function of angle of inci-
decibels as function of angle of inci- dence for the flow field which includes a
dence for the inviscid flow field. boundary layer.



PABLE II.- COMPUTER RESULTS FOR THE INHOMOGENEOUS PLASMA SLAB

o >
8, | Ty, | To, |1 - By,s|1 - Bos Bpp, Bros 81, Btz B2 - Bp1,[Bt2 - B¢l

deg | db db db db radians |[radians |[radians{radians| radians radians

(2) Invicid flow results; f = 24k.3 x 106 cps; zy = 3.36 cm

0 }-34.8|-—--- 22,1 | —e--- -3.106 |----~- 3 1R o e ) PUVRPRUPRPUARY [
10 |-35.0|-34%.9| -22.1 | -22.0 |-3.106 ]0.0367 |-1.410 |-1.k17 3,143 -0.0072
20 |-35.4|-34.5] —22.3 { -21.8 {-3.108 | .0384 {-1.k10 |-1.411 3.146 -.000k4
30 |[-36.1{-33.8| -22.7 | -21.% |-3.110 | .obk1i7 [-1.k11 |-1.k00 3.152 .011L
45 (-37.8(-32.2{ -23.6 { -20.5 {-3.116 | .0510 [-1.413 [-1.372 3.167 .0k11
60 |[-40.8|-29.4| -25.2 | -18.9 |-3.124 | .0720 [-1.416 |-1.320 3,196 .0962
70 |-kk.1]-26.5) -26.9 | -17.1 |-3.129 | .1051 [-1.418 [-1.250 3.234 .1682
85 |-56.0|-17.6] -32.9 | -10.8 {-3.138 | .k001 |-1.k22 | -.7979} 3.53%9 .6239
89.5(-76.0|-18.9| -k2.9 [ ~7.9 [-3.141 [2.199 j-1.423 .5358| 5.340 1.959

(b) Boundary-layer results; f = 24k.3 x 106 cps; zo = 3.36 cm

o |-18.1]----- ~13.7 | —~—-- -2.977 |-=---- “1.338 foomooen | eemee | el
0 (-18.2(-18.0| -13.8 | -13.8 {-2.979 (0.1592 (-1.3k0 {-1.342 3.138 | -0.0026
20 |-18.6(-17.6| -1k.1 | -13.6 |-2.986 | .1666 |-1.345 |-1.3%0 3.153 L0152
30 |-19.3{-17.0| -1k.5 | -13.1 |-2.998 | .180k |-1.35L4 |-1.308 3.179 .ok11
45 [-21.1{-15.4] -15.6 { -12.0 [-3.024 | .2196 [-1.373 |-1.249 3. 24k .1239
60 |-2k.0{-12.9} -17.5 | -10.1 |-3.058 | .3052 |-1.399 |-1.133 3.364 2652
70 [-27.3(-10.3] -19.4 -8.0 |-3.085 | .4323 [-1.L18 | -.9766( 3.517 L4ka3
85 |-39.1| -5.4] -25.9 -3.5 {=3.127 |1.2k9 |-1.450 | -.1782| L4.376 1.271
89.51-59.1{-15.6] -36.1 -8.7 |[-3.140 |2.807 |-1.459 .9538| 5.947 2.413

SUMMARY EQUATIONS FOR MACHINE CALCULATIONS

Accurate solutions of the wave propagation equations for a one-dimensional
plane-parallel plasma slab can be obtained by numerical integration of the fol-
lowing differential equations:

Ey1 case:

2
LT 1 k2(V¥r - Ws)

=0
(izz
éégs 2 *
——+k0(Wr+Vs)=O
dz2
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dz dz

o (dwg1+d_v

d_u> + k02<V*t - Wu>

®u vV fwa @), W (W aWaw
dz2 v2 + woe\dz dz 4z dz v2 + w2\dz dz
V¥ =V - sin®p
v-1- L
W 2 s 2
@ “p
%
W:/% 1

oM

At normal incilidence only the first set of equations need be solved.

2

)

starting point for the solution to the equations is

ary conditions must be met:

r(z0)

s(20)

I

r'(zo0)

s'(20) = %o

t(zo)

u(zo)

cos 6

Il

The

zg, and the following bound-
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t'(z0) = -kogW(zp)cos 6

u'(zo) koV(zp)cos 8

The boundary conditions at the surface 2z = 0 determine reflection coeffi-
cients, transmission coefficients, and phase factors such that:

2
|T1 | =
A12+B12
2
[To] =
A22+B22
[Ri]| =
IRy | =

-B -D
&r1 = Reflected phase = arc tan ( l> - arc tan ( l)

A C1
S = Transmitted phase = arc tan (_Bl) - Zn COS ©

t1 A 0]
1

-Bo -D
&rp = Reflected phase = arc tan ( ) - arc tan ( 2>

Ap Co

3k




-B
S¢p = Transmitted phase = arc tanli( 2)] - kgzg cos €

Ay
Bl
C1
Dy
Ay = t(0) +
Bo = u(0) -
Co = t(0) +
Do = u(0) +

I‘(O) + _w_

ko cos 0O
s(0) - r'(0)

kp cos 6
£(0) - s'(0)

ko cos @

r'(0)
S(O) * kO cos 6

~
-W(0)t'(0) + v(0)u'(0)

ky cos e[}lg(o) + v2(oﬂ

-

~
v(0)t'(0) + W(0)u'(0)

ky cos GEJE(O) + VE(OB
_

w(o)t'(0) - v(o)u'(0)

ky cos 9E¢2(O) + VE(O)])

-~

V(o)t'(o) + W(0)u'(0)

ko cos eEJE'(o) + v2(o{] ’

~
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For arbitrary orientation of the electric vector with respect to the plane
of incidence,

mh = (as?+ 332)1/a
1R = (Aue + B&2>l/l+
Az = T12c052¢ + T22sin2¢ cos E(Stg - 5tl>
B3 = T2281n2¢ sin E(Stg - 5t1>
Ay = R120052¢ + Rggsin2¢ cos 2(5r2 - 6rl>

B), = Rp®sin2j sin 2(51«2 - arl)

If the incident wave is elliptically polarized, the polarization phase factor ¢
is added to ©®p; and 8t). The solutions to the wave equation remain unchanged.

CONCLUSLIONS

The equations and the associated boundary conditions which describe the
interaction of electromagnetic waves with a one-dimensional inhomogeneous plasma
slab were developed in a form suitable for machine programing. The program solves
for the reflection coefficients, transmission coefficients, and phase factors for
the components of the electric vector perpendicular to and parallel to the plane
of incidence. ¥From these results, a wave for which the electric vector is of
arbitrary orientation to the plane of incidence and of arbitrary polarization can
be completely defined.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 23, 1963.
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APPENDIX
IMPLICATIONS OF BOUNDARY CONDITIONS

The purpose of this appendix is to show:

(1) That the behavior of the wave in the plasma as a function of x is of
ikoxsing

the form e

(2) That the exit angle of the wave is equal to the angle of incidence

(3) That the solutions of the wave equations are independent of the
y-coordinate if the incident waves are independent of Y.

The general form of equation (6) implies solutions which are functionally
dependent upon all the coordinates x, y, and =z; that is,

Ey = By(x,¥,2) (A1)

If by arbitrary choice of coordinates, the incident and reflected waves in free
space are independent of Yy, then the solution of the wave equation is

Ey(x,0,2) = eikoxx(MeikOZz + Ne'ikOZZ> (A2)

The e'lkOXx term is dropped, so that the waves are required to propagate
in the positive x-direction. The coefficients M and N are interpreted as
incident and reflected wave amplitudes, of such character that:

Eiy(x,0,z) = Mel KOxx+1koz2

— Eioyelkox51ne+1kozcose (A3)
Ery(x,O,z) = Nel¥oxX-1kozz

- Eroyelkoxs1n9—1kozcose (AM)

where, from figure 1, kg, = kj sin 8, kg, = k5 cos 6, and 6 is the angle of
inecidence.
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The boundary conditions require that the tangential components of f? be
continuous across the surface z = 0. The boundary condition for the perpendic-

ular component is:

(A5)

After the vector operations are performed, the boundary condition becomes

Eyre = Eyp (A6)

The value of Eypg 1s the sum of equations (A3) and (AL). Therefore, at

z =0,
. 5 in6
By oyelX0%8100 4 g o etkoxsIng _ 5oy v o) (AT)
At x =y = 0, equation (A7) becomes

Eioy * Eroy = Ey(0,0,0) (AT2)

The plasma properties at a point on the surface 2z = 0 are indistinguish-
able from those at any other point. Hence, equation (A72) must be satisfied at
any point on the surface z = O. At another point (0,y»), equation (A7) is

Eioy *+ Eroy = Ey(0,¥y2,0) (ATD)

Equations (A7a) and (A7b) are identical. Therefore, the electric vector in the
plasma is independent of the coordinate y, and wave propagation must occur in
the xz-plane.

At another point (x0,0) equation (A7) becomes

<Eioy + Ero¥>eikox251n9 = Ey(x2,0,0> (ATe)
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The presence of the sinusoidal factor elkox2Slne implies that the energy trans-
mitted into the plasma varies as a function of x. This implication is physically
unreasonable for incident plane waves, and the right-hand side of equation (ATc)
mist be

Ey(x2,o,o) = Ey(o,o)eikOXESine (A8)

Thus, the right-hand side of equation (A7) has the form

Ey _ Ey(z)eikoxsine
iknxsing
= Fy(z)e ko (A9)
The solution to the wave equation in free space for =z 2 zg 1is
ik +ik
Ety = Egoge COX  t0Z” (A10)

-1 Z
An e t0z term does not appear because the wave is outgoing. If 64 is the

angle between the z-axis and the direction of propagation, then

iknxsing++iknzcoss
Egy = Byoye O t+ikpzeosty (A11)

One of the necessary boundary conditions requires that equations (A9) and (All)
must be equal at =z = zy. Therefore,

ikpxsing 1kpoxsind++iknzpcoss
Fy(20)e™0 = Bygye 0XOTnOtHi0z00050 (a12)
At x = 0, equation (A12) becomes
iknzncosH
Fy zo> = Eygye kozocosty (Al2a)

Since the plasma properties are indistinguishable over the surface, equa-
tion (Al2a) must be identically satisfied for every point (x,y) at 2z = zQ-
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There?ore, equation (Al2a) completely specifies Fy(zo>. Substituting equa-
tion (Al2a) into equation (A12) leads to the identity

eikoxsine = eikoxsinet (A13)
Hence
8 = 6¢
The continuity requirements for the component Hy, lead to the following equation:
(HiOy + Hroy->eik0XSine = Hy(x,y,0) (ALL)

This equation is of the same form as equation (A7), and arguments similar to
those applied in the analysis of Ey show that

Hy(x,2) = Gy(z)et50*1n (A15)

It is of interest to note that Hy 1is also independent of y; hence all the
solutions, Ex, Ey, Ez, Hx, Hy, and Hz are independent of y.
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